Interface condition for the Darcy velocity at the water-oil flood front in the porous medium
نویسندگان
چکیده
Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CVCM). Our study has inspected this conclusion. First, it is revealed that the principle of mass conservation has no direct relation to the velocity conservation, and the former is not the true foundation of the later, because the former only reflects the kinetic characteristic of the fluid particles at one position(the interface), but not the different two parts of fluid on the different side of the interface which required by the interface conditions. Then the reasonableness of CVCM is queried from the following three aspects:(1)Using Mukat's two phase seepage equation and the mathematical method of apagoge, we have disproved the continuity of each fluid velocity;(2)Since the analytical solution of the equation of Buckley-Leveret equations is acquirable, its velocity jumps at the flood front presents an appropriate example to disprove the CVCM;(3) The numerical simulation model gives impractical result that flood front would stop moving if CVCM were used to calculate the velocities at the interface between two gridcells. Subsequently, a new one, termed as Jump Velocity Condition Model (JVCM), is deduced from Muskat's two phase seepage equations and Darcy's law without taking account of the capillary force and compressibility of rocks and fluids. Finally, several cases are presented. And the comparisons of the velocity, pressure difference and the front position, which are given by JVCM, CVCM and SPU, have shown that the result of JVCM is the closest to the exact solution.
منابع مشابه
Analytical Investigation of Forced Convection in Thermally Developed Region of a Channel Partially Filled with an Asymmetric Porous Material- LTNE Model
In present work forced convection flow in a channel partly filled with a porous media under asymmetric heat flux boundary condition has been investigated. The porous material is distributed on the one wall. Darcy–Brinkman and LTNE model have been assumed in order to solve momentum and energy equations, respectively. Fully developed conditions are considered in order to solve velocity and the te...
متن کاملNumerical Study of Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with Nanofluid
Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...
متن کاملComparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media
Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملEvaluation of wall thickness and porosity effects on the conjugate free convection heat transfer rate of hybrid nanofluid inside a square cavity
At present study, effects of wall thickness and porosity on the conjugate free convection heat transfer inside a square cavity have been examined. Continuity, momentum and energy equations for fluid and solid matrix phases are governing equations in present work. Mentioned equations and related boundary conditions have been transformed into their non-dimensional forms. They are solved using fin...
متن کامل